STEREOCHEMICAL CONTROL ON THE PHOTOCHEMISTRY OF \propto -METHOXY- B, γ -CYCLOPROPYL CYCLIC KETONES REACTIONS OF EPIMERIC 3-METHOXY-4-CARANONES⁺

> H R Sonawane*, B S Nanjundiah and P C Purohit National Chemical Laboratory, Pune 411008, India

SUMMARY The two distinct photoreactions exhibited by epimeric ketones have been correlated with their stereochemistry

Typically, a β , γ -cyclopropyl cyclic ketone on photoexcitation is known to undergo α -cleavage and cyclopropyl-carbinylhomoallyl rearrangement¹ The effect of different α -substituents in this class of cycloalkanones has practically remained unexplored We report herein a remarkable stereochemical control on the photochemical behaviour of two ketones 1 and 2 bearing α -methoxy substituent at C-3 position

Ketone $\underline{1}^2$ on irradiation³ in ethanol through corex afforded a photolysate (69%) which essentially was a mixture of ethyl esters⁴ $\underline{3}$ and $\underline{4}$ in a 4 l ratio and a minor amount of $\underline{5}$ (eqn-I) By contrast, the ketone $\underline{2}^5$ upon similar irradiation furnished only isocaranone $\underline{5}$ as the primary photoproduct which on further photodecomposition⁶ finally yielded (55%) a mixture of $\underline{6}$ and $\underline{7}$ (eqn-II) During the course of irradiations, the interconversion of $\underline{1} \not\rightleftharpoons \underline{2}$ was not detected

The unique features of these photochemical transformations are as follows (1) The ketone <u>1</u> possessing an axial methoxy group⁷ favoured \checkmark -cleavage which is rare in β, γ -cyclopropyl ketone photochemistry. The parent ketone <u>5</u> is known⁶ to furnish <u>6</u> and <u>7</u> by \preccurlyeq -cleavage, 'allylic' to cyclopropane (eqn-II). A preference for \preccurlyeq '-cleavage in <u>1</u> may be ascribed to the formation of a stabler tertiary radical (11) A stereoselective formation of ester <u>3</u> (111) The ketone 2 with an equatorial methoxy group underwent exclusively Norrish type II elimination to <u>5</u>. The required in-plane six-membered transition state can readily occur in this ketone (cf. molecular model), therefore, the other competitive process of \preccurlyeq -cleavage is of less importance (11) Interestingly enough, the model ketone <u>8</u>⁷ on similar irradiation furnished \sim 1 1 mixture (75%) of <u>9</u>⁴ and <u>10</u>⁴ arising from Norrish type I \preccurlyeq -cleavage and Norrish type II elimination respectively (eqn-III)

We believe that the selective transformation of ketone $\underline{1}$ to esters $\underline{3}$ and $\underline{4}$ may find application in the synthesis of pyrethroids⁸

REFERENCES AND NOTES

+ NCL Communication No 3298

- 1 R K.Murray and T M Ford, <u>J Am Chem Soc</u>, <u>102</u>, 3194 (1980) and references cited therein
- 2 W Cocker and D H Crayson, Tetrahedron Letters, 4451 (1969)
- 3 Irradiations were carried out using a 200 watt high pressure Hanovia lamp till the disappearance of the starting ketones
- All photoproducts exhibited consistent spectral data (PMR, IR, MS) and gave satisfactory elemental analyses The structures <u>3</u> and <u>4</u> were confirmed by direct comparison with their authentic samples prepared by NaBH_dreduction of ethyl-2,2-dimethyl-3-(2'-oxopropyl)-cyclopropane-cis-l acetate [R R.Sobti and Sukh Dev, <u>Tetrahedron, 30</u>, 2927 (1974)] followed by methylation with HC(OCH₃)₃ Ester <u>4</u> was not formed when <u>1</u> was irradiated in the presence of piperylene Suggesting that <u>3</u> and <u>4</u> are derived from the singlet and triplet excited states respectively Hydrogen abstraction in the singlet biradical (*<*¹ -cleavage) is expected to maintain the original configuration at C-3 to give <u>3</u> [R B Gagosian, J C Dalton and N J Turro, J Am Chem Soc , 97, 5189, (1975)]
- 5 Z G Isaeva and I S Andreeva, Dok1 Akad Nauk_SSSR, 152, 106 (1963)
- 6 D C Heckert and P J Kropp, J Am Chem Soc, 90, 4911 (1968), An independent irradiation of 5 under similar conditions afforded essentially a mixture of 6 and 7 (yield 48%)
- 7 The conformations depicted for $\underline{1}$ and $\underline{2}$ are based on the preferred conformations of $\underline{5}$ and it's C-3 epimer [P Teisseire, A Galfre, M Plattier, P Rouillier and B.Corbier, <u>Recherches</u>, <u>16</u>, 119 (1967)]
- 8 Ketone 8 was prepared by a new route (unpublished results).
- 9 M Elliot and N F Janes, Chem <u>Soc</u> <u>Revs</u>, <u>7</u>, 473 (1978)

One of us (pcp) is grateful to CSIR, New Delhi for the award of fellowship The authors thank Dr M S Wadia, University of Poona, for stimulating discussions

(Received in UK 14 June 1983)